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Abstract. The effective gluon propagator constructed with the pinch technique is governed by a Schwinger-
Dyson equation with special structure and gauge properties, that can be deduced from the correspondence
with the background field method. Most importantly the non-perturbative gluon self-energy is transverse
order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions, a property
which allows for a meanigfull truncation. A linearized version of the truncated Schwinger-Dyson equation is
derived, using a vertex that satisfies the required Ward identity and contains massless poles. The resulting
integral equation, subject to a properly regularized constraint, is solved numerically, and the main features
of the solutions are briefly discussed.

PACS. 12.38.Lg Other nonperturbative calculations — 12.38.Aw General properties of QCD (dynamics,

confinement, etc.)

It is well known that one of the main theoretical prob-
lems when dealing with Schwinger-Dyson (SD) equations
is that they are built out of unphysical off-shell Green’s
functions; thus, the extraction of reliable physical informa-
tion depends crucially on delicate all-order cancellations,
which may be inadvertently distorted in the process of
the truncation. The truncation scheme based on the pinch
technique (PT) [1,2] implements a drastic modification at
the level of the building blocks of the SD series. The PT
enables the construction of new, effective Green’s func-
tions endowed with very special properties; most impor-
tantly, they are independent of the gauge-fixing parame-
ter, and satisfy QED-like Ward identities (WI) instead of
the usual Slavnov-Taylor identities. The upshot of this ap-
proach would then be to trade the conventional SD series
for another, written in terms of the new Green’s functions,
and then truncate this new series, by keeping only a few
terms in a “dressed-loop” expansion, maintaining exact
gauge-invariance. Of central importance in this context is
the connection between the PT and the Background Field
Method (BFM), a special gauge-fixing procedure that pre-
serves the symmetry of the action under ordinary gauge
transformations with respect to the background (classi-
cal) gauge field ﬁz As a result, the background n-point
functions satisfy QED-like all-order WIs. The connection
between PT and BFM, which is known to persist to all
orders (last two articles in [2]), affirms that the (gauge-
independent) PT effective n-point functions coincide with
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the (gauge-dependent) BFM n-point functions provided
that the latter are computed in the Feynman gauge. In
this paper we report recent progress on the issue of gluon
mass generation in the PT-BFM scheme [3].

We first define some basic quantities. The£e are two
gluon propagators appearing in this problem, A, (¢) and
Au(q), denoting the background and quantum gluon
propagator, respectively. Defining P, (q) = gu — %,

we have that AA,“,(q), in the Feynman gauge is given by

Alq) = —i Pw<q>£<q2>+q’;4q” : (1)

The gluon self-energy, IATW(q), has the form IATW,(q) =
P, (q) II(¢?), and A~Y(¢?) = ¢* + ill(¢?). Exactly anal-
ogous definitions relate A, (q) with IT,,(q).

As is widely known, in the conventional formalism the
inclusion of ghosts is instrumental for the transversality
of IT l‘jfi (q), already at the level of the one-loop calculation.
On the other hand, in the PT-BFM formalism, due to
new Feynman rules for the vertices, the one-loop gluon
and ghost contribution are individually transverse [4].

As has been shown in [3], this crucial feature persists at
the non-perturbative level, as a consequence of the simple
WiIs satisfied by the full vertices appearing in theA diagrams
of fig. 1, defining the BFM SD equation for A,,(q) [5].
Specifically, the gluonic and ghost sector are separately
transverse, within each individual order in the dressed-
loop expansion.
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Fig. 1. The SD equation for the gluon propagator in the BFM.
All external legs (ending with a vertical line) are background
gluons, wavy lines with grey blobs denote full-quantum gluon
propagators, dashed lines with grey blobs are full-ghost propa-
gators, black dots are the BFM tree-level vertices, black blobs
are the full conventional vertices, and white blobs denote full
three- or four-gluon vertices with one external background leg.

Let us demonstrate this property for graphs (a;) and
(), given by

~ 1 ~ner AQ ~ be' 2’ -

Hluli(q)|al = § /[dk] uaBAeep’ (k)Tupa Alojx’(k‘ + q)a
Ta 1 Tabexr A«

), =5 [ T A2 b, )

where [dk] = d?k/(2m)¢ with d = 4 — € the dimension of
space-time. By virtue of the BFM all-order WI

~ abc

AT s, 32,05) = 91 [ATM @) = A3 (as)] . (3)
and using the tree-level f‘u,,ag given in [4], we have
I, = Cags g, [ 14K 2500,
I, = ~Cag?d . 1K 250, )

and thus, q”(f[ﬁfi(q) |al + ﬁﬁ,’i(q)|a2) = 0. The importance
of this transversality property in the context of the SD
equation is that it allows for a meaningful first approx-
imation: instead of the system of coupled equations in-
volving gluon and ghost propagators, one may consider
only the subset containing gluons, without compromising
the crucial property of transversality. We will th(irefore
study as the first non-trivial approximation for I1,,(q)
the diagrams (a;) and (as). Of course, we have no a pri-
ori guarantee that this particular subset is numerically
dominant. Actually, as has been argued in a series of SD
studies, in the context of the conventional Landau gauge
it is the ghost sector that furnishes the leading contri-
bution [6] Clearly, it is plausible that this characteristic
feature may persist within the PT-BFM scheme as well,
and we will explore this crucial issue in the near future.
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The equation given in (2) is not a genuine SD equation,
in the sense that it does not involve thAe unknown quantity
A on both sides. Substituting A — A on the RHS of (2)
(see discussion in [3]), we obtain

~

f(a) = 5 Cag® [0 TP AT oAk +)
= Cag? dgy [1d A(R) 5)

with Tyas = (2k + ¢)u908 — 20adus + 2439ua, and
@ Tvas = [A7k+0) = A7 (1) gas. (6)
We can then linearize the resulting SD equation, by re-

sorting to the Lehmann representation for the scalar part
of the gluon propagator [1],

Alg) = /d,\2

and setting on the first integral of the RHS of eq. (5):

p(N)
g2 — X2 +i€e’

(7)

SO dX? p(\?) T 5
BWTwes300+0) = | affs oy

(8)
where f‘,}aﬁ must be such as to satisfy the tree-level WI

0T = [(k+ 0 = X] gas — (K = X)gas-  (9)
We propose the following form for the vertex:

o
Lap = Tvas +1 <(2k +ay g Kk q)2]> Jas

+ ((:3 + 2% [(k +q)* + k2]) (489va — dagus)» (10)
which, due to the presence of the massless poles, allows
the possibility of infrared finite solution.

Due to the QED-like WIs satisfied by the PT Green’s
functions, A~1(¢?) absorbs all the RG-logs. Consequently,
the product d(¢?) = g2A(q?) forms a RG-invariant (u-
independent) quantity. Notice however that eq. (5) does
not encode the correct RG behavior: when written in
terms of d(q?) it is not manifestly g?>-independent, as it
should. In order to restore the correct RG behavior, we
use the simple prescription proposed in [1], whereby we
substitute every A\(z) appearing on the RHS of the SD
equation by

2

AA(Z) -9 AA(Z)

S S nEIAE. (D
Then, setting b= —140825, o= 6(615“2), = 4 Cé+3 2 we

finally obtain
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Fig. 2. Results for c?(q2), for different values for c/l\fl(O) (all in
GeV?), and the corresponding values for o.
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bo [ ey d0)
2 2(k?)

(14)

It is easy to see now that eq. (12) yields the correct UV
behavior, i.e. d~'(q?) = bq? In(q?/A2).

When solving (12) we will be interested in solutions
that are qualitatively of the general form [1]

~ o Gpld®)
d(q”) = qQ_EPTQ(qg)a (15)
where
yQNP(QQ) — [l;ln <l] +f(qAa2m (q ))) :|_ , (16)

g%p(q?) represents a non-perturbative version of the RG-
invariant effective charge of QCD: in the deep UV it goes
over to §°(¢?), while in the deep IR it “freezes” [1,7],
due to the presence of the function f(q%, m?(¢?)), whose
form will be determined by fitting the numerical solution.
The function m?(¢?) may be interpreted as a momentum-
dependent “mass”. In order to determine the asymptotic
behavior that eq. (12) predicts for m?(¢?) at large ¢, we
replace eq. (15) on both sides, set (1 — 42/¢%)'/? — 1,
obtaining self-consistency provided that
m?*(¢*) ~miIn™* (¢*/A%), with a=1+4~>0. (17)
The seagull-like contributions, defining d =" (0) in (14),
are essential for obtaining IR finite solutions. However, the
integral in (14) should be properly regularized, in order to
ensure the finiteness of such a mass term. Recalling that
in dimensional regularization [[dk]/k* = 0, we rewrite
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Fig. 3. a(¢®) = gup(q®) /4w from the propagators of fig. 2.

eq. (14) (using (15)) as

d='(0)

bo Taop (k2) 1
% [ (e )
bo m2(k?)
w2 / (4] k2[k2 + m2(k2)]

+ Ej—;/[dk] d(k?)1n (1+W) - (18)

The first integral converges provided that m?(k?) falls
asymptotically as In"%(k?), with a > 1, while the second
requires that f(k%, m?(k?)) should drop asymptotically at
least as fast as In~“(k?), with ¢ > 0. Notice that perturba-

tively d ~1(0) vanishes, because m?(k2) = 0 to all orders,
and, in that case, f = 0 also.

Solving numerically eq. (12), subject to the constraint
of eq. (14), we obtain solutions shown in fig. 2; they can be
fitted perfectly by means of a running coupling that freezes
in the IR, shown in fig. 3, and a running mass that vanishes
in the UV [3]. ¢ is treated as a free parameter, whose
values are fixed in such a way as to achieve compliance
between eqs. (12)—(14).
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